首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28552篇
  免费   2194篇
  国内免费   1573篇
  2023年   308篇
  2022年   364篇
  2021年   1249篇
  2020年   970篇
  2019年   1197篇
  2018年   1172篇
  2017年   836篇
  2016年   1241篇
  2015年   1909篇
  2014年   2137篇
  2013年   2301篇
  2012年   2635篇
  2011年   2302篇
  2010年   1461篇
  2009年   1247篇
  2008年   1524篇
  2007年   1332篇
  2006年   1169篇
  2005年   986篇
  2004年   793篇
  2003年   703篇
  2002年   534篇
  2001年   476篇
  2000年   377篇
  1999年   412篇
  1998年   239篇
  1997年   262篇
  1996年   244篇
  1995年   214篇
  1994年   217篇
  1993年   150篇
  1992年   218篇
  1991年   184篇
  1990年   130篇
  1989年   106篇
  1988年   79篇
  1987年   108篇
  1986年   82篇
  1985年   69篇
  1984年   52篇
  1983年   36篇
  1982年   36篇
  1981年   26篇
  1980年   21篇
  1979年   25篇
  1978年   17篇
  1977年   16篇
  1975年   21篇
  1974年   18篇
  1972年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Members of the casein kinase 1 (CK1) family are evolutionarily conserved eukaryotic protein kinases involved in various cellular, physiological, and developmental processes in yeast. However, the biological roles of CK1 members in plants are poorly understood. Here, we report that an Arabidopsis CK1 member named casein kinase 1-like 8 (CKL8) was ubiquitously expressed in all plant organs, mainly in the stems of seedlings according to quantitative real-time PCR. Western blotting showed a remarkable expression of the AtCKL8 gene in transgenic plants induced by high salinity. A histochemical assay of AtCKL8 promoter::GUS expression revealed that the AtCKL8 promoter is very active in both seedlings and adult plants subjected to the salinity stress, while no GUS activity was detectable in all the transgenic plants grown under normal conditions. In a subcellular distribution analysis, the AtCKL8-GFP fusion protein was localized mainly in the cell membrane. AtCKL8-overexpressing transgenic plants showed an insensitivity to high salinity and an early flowering phenotype. Overall, these findings suggest that AtCKL8 plays a positive role in NaCl signaling and improves salt stress tolerance in transgenic Arabidopsis.  相似文献   
82.
The isothermal crystallisation of polyethylene (PE) chains around single PE lamella in vacuum is investigated by molecular dynamic simulation. The crystallisation process is analysed in terms of the orientational order parameters, principal moments of inertia for the simulated systems. The effects of charge interactions between the polymer chains and lamella are discussed. It is found that the crystallisation process for uncharged systems can be divided into three stages: (1) adsorption, (2) orientation and (3) arrangement. The single polymer lamella changes a little during the three stages. PE chains are arranged parallel to the chain direction of the stems in the crystalline state. When considering the effect of charge interactions between the polymer chains and lamella, a different crystallisation process appears. The single polymer lamella is affected by the charged polymer chains.  相似文献   
83.
84.
Calcium, as the most widely accepted messenger, plays an important role in plant stress responses through calcium-dependent signaling pathways. The calmodulin-like family genes (CMLs) encode Ca2+ sensors and function in signaling transduction in response to environmental stimuli. However, until now, the function of plant CML proteins, especially soybean CMLs, is largely unknown. Here, we isolated a Glycine soja CML protein GsCML27, with four conserved EF-hands domains, and identified it as a calcium-binding protein through far-UV CD spectroscopy. We further found that expression of GsCML27 was induced by bicarbonate, salt and osmotic stresses. Interestingly, ectopic expression of GsCML27 in Arabidopsis enhanced plant tolerance to bicarbonate stress, but decreased the salt and osmotic tolerance during the seed germination and early growth stages. Furthermore, we found that ectopic expression of GsCML27 decreases salt tolerance through modifying both the cellular ionic (Na+, K+) content and the osmotic stress regulation. GsCML27 ectopic expression also decreased the expression levels of osmotic stress-responsive genes. Moreover, we also showed that GsCML27 localized in the whole cell, including cytoplasm, plasma membrane and nucleus in Arabidopsis protoplasts and onion epidermal cells, and displayed high expression in roots and embryos. Together, these data present evidence that GsCML27 as a Ca2+-binding EF-hand protein plays a role in plant responses to bicarbonate, salt and osmotic stresses.  相似文献   
85.
86.
87.
Breast cancer is the major cause of cancer death in women worldwide. The most common site of metastasis is bone. Bone metastases obstruct the normal bone remodeling process and aberrantly enhance osteoclast-mediated bone resorption, which results in osteolytic lesions. 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is an endogenous ligand of peroxisome proliferator-activated receptor gamma (PPARγ) that has anti-inflammatory and antitumor activity at micromolar concentrations through PPARγ-dependent and/or PPARγ-independent pathways. We investigated the inhibitory activity of 15d-PGJ2 on the bone loss that is associated with breast cancer bone metastasis and estrogen deficiency caused by cancer treatment. 15d-PGJ2 dose-dependently inhibited viability, migration, invasion, and parathyroid hormone-related protein (PTHrP) production in MDA-MB-231 breast cancer cells. 15d-PGJ2 suppressed receptor activator of nuclear factor kappa-B ligand (RANKL) mRNA levels and normalized osteoprotegerin (OPG) mRNA levels in hFOB1.19 osteoblastic cells treated with culture medium from MDA-MB-231 cells or PTHrP, which decreased the RANKL/OPG ratio. 15d-PGJ2 blocked RANKL-induced osteoclastogenesis and inhibited the formation of resorption pits by decreasing the activities of cathepsin K and matrix metalloproteinases, which are secreted by mature osteoclasts. 15d-PGJ2 exerted its effects on breast cancer and bone cells via PPARγ-independent pathways. In Balb/c nu/nu mice that received an intracardiac injection of MDA-MB-231 cells, subcutaneously injected 15d-PGJ2 substantially decreased metastatic progression, cancer cell-mediated bone destruction in femora, tibiae, and mandibles, and serum PTHrP levels. 15d-PGJ2 prevented the destruction of femoral trabecular structures in estrogen-deprived ICR mice as measured by bone morphometric parameters and serum biochemical data. Therefore, 15d-PGJ2 may be beneficial for the prevention and treatment of breast cancer-associated bone diseases.  相似文献   
88.
myo-Inositol (MI) as a dietary supplement can provide various health benefits. One major challenge to its efficient biosynthesis is to achieve proper distribution of carbon flux between growth and production. Herein, this challenge was overcome by synergetic utilization of glucose and glycerol. Specifically, glycerol was catabolized to support cell growth while glucose was conserved as the building block for MI production. Growth and production were coupled via the phosphotransferase system, and both modules were optimized to achieve efficient production. First, the optimal enzyme combination was established for the production module. It was observed that enhancing the production module resulted in both increased MI production and better cell growth. In addition, glucose was shown to inhibit glycerol utilization via carbon catabolite repression and the inhibition was released by over-expressing glycerol kinase. Furthermore, the inducible promoter was replaced by strong constitutive promoters to avoid inducer use. With these efforts, the final strain produced MI with both high titer and yield. In fed-batch cultivation, 76 g/L of MI was produced, showing scale-up potential. This study provides a promising strategy to achieve rational distribution of carbon flux.  相似文献   
89.
Myocardial infarction (MI) leads to cardiac remodelling and heart failure. Cardiomyocyte apoptosis is considered a critical pathological phenomenon accompanying MI, but the pathogenesis mechanism remains to be explored. MicroRNAs (miRs), with the identity of negative regulator of gene expression, exist as an important contributor to apoptosis. During the experiment of this study, MI mice models were successfully established and sequencing data showed that the expression of miR-23a-5p was significantly enhanced during MI progression. Further steps were taken and it showed that apoptosis of cardiac cells weakened as miR-23a-5p was downregulated and on the contrary that apoptosis strengthened with the overexpression of miR-23a-5p. To explore its working mechanisms, bioinformatics analysis was conducted by referring to multi-databases to predict the targets of miR-23a-5p. Further analysis suggested that those downstream genes enriched in several pathways, especially in the PI3K/Akt singling pathway. Furthermore, it demonstrated that miR-23a-5p was negatively related to the phosphorylation of PI3K/Akt, which plays a critical role in triggering cell apoptosis during MI. Recilisib-activated PI3K/Akt singling pathway could restrain apoptosis from inducing miR-23a-5p overexpression, and Miltefosine-blocked PI3K/Akt singling pathway could restrict apoptosis from inhibiting miR-23a-5p reduction. In conclusion, these findings revealed the pivotal role of miR-23a-5p-PI3K/Akt axis in regulating apoptosis during MI, introducing this novel axis as a potential indicator to detect ischemic heart disease and it could be used for therapeutic intervention.  相似文献   
90.
Yang  Su-Rong  Sun  Huan-Xin  Hu  Zhen-Zhen  Wang  Si-Heng  Sun  Hui  Xue  Yin-Jia  Ye  Chen-Bo 《Sleep and biological rhythms》2017,15(1):57-65
Sleep and Biological Rhythms - Chronic sleep deprivation (SD) is an overwhelming problem in young students. Firstly, we investigated whether different levels of pre-training SD had effects on...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号